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Values for the mathematical expectation of the normalized Bijvoet difference x are derived for non- 
centrosymmetric crystals belonging to triclinic, monoclinic and orthorhombic space groups containing 
a small number (i.e. p--- 1 or 2) of anomalous scatterers in the asymmetric unit besides a large number 
of similar normal scatterers. These results are used to study the influence of space-group symmetry on 
the measurability of Bijvoet differences. 

1. Introduction 

The optimum conditions for the measurability of 
Bijvoet differences and the influence of the number of 
anomalous scatterers in the unit cell on the measura- 
bility were studied earlier by making use of the 
probability distributions of the normalized Bijvoet 
differences x and A and the Bijvoet ratio J (Partha- 
sarathy & Srinivasan, 1964; Parthasarathy, 1967; 
Parthasarathy & Parthasarathi, 1973). These distri- 
butions were, however, worked out for triclinic crys- 
tals of space group P1. Since many organic crystals 
belong to space groups of higher symmetry (parti- 
cularly monoclinic and orthorhombic), it would be 
useful to see whether space-group symmetry influences 
the measurability of Bijvoet differences. For discussing 
this the probability distribution of the Bijvoet ratio 
would be the more relevant quantity, but the deriva- 
tion of this is complicated. The problem can 
however be analysed from a knowledge of the ex- 
pectation value of the normalized Bijvoet difference x. 
We shall therefore work out this expectation value 
(denoted by (x)) which can be evaluated without 
obtaining the probability distribution of x. The 
quantity (x)  will be evaluated under the following 
conditions: (i) There are either one or two anomalous 
scatterers (same type) in the asymmetric unit besides a 
large number of normal atoms of similar scattering 
power; (ii) All atoms in the asymmetric unit occupy 
general positions; (iii) Only non-centrosymmetrie 
crystals belonging to triclinic, monoclinic and ortho- 
rhombic space groups are considered. 

2. Derivation of the expectation value of x 

The normalized Bijvoet difference x is defined as 
(Parthasarathy, 1967) 

x= IAII/4kaaa ~ = yeyau , (1) 

where Ye and Yo are the normalized structure ampli- 

* Contribution No. 414. 

tudes due to the real part of the scattering factors of 
the anomalous scatterers and normal scatterers 
respectively and u = Isin (c4,- ~o)l = [sin v/I. Since yp, 
Yo and g are independent (Parthasarathy & Srinivasan, 
1964), it follows from (1) that 

(x}=  (YP} (Yo} (u}.  (2) 

Since the Q-atoms (i.e. normal scatterers) are assumed 
to statisfy the requirements of the acentric Wilson 
distribution, it follows that (yQ)=]/7~/2 (Wilson, 
1949). Since the angle between F~ and F o is uniformly 
distributed in the interval - n  to n, it follows that 

~nl2 
2 30 sin 2 ( u ) =  ~ ~d~,= ~ .  (3) 

We can therefore rewrite (2) as 

1 
( x ) =  ~-~ (Ye).  (4) 

From (4) it is clear that (x)  could be evaluated for 
crystals of any space group provided (ye)  can be 
obtained. The latter can be evaluated, for crystals of 
the triclinic, monoclinic and orthorhombic systems by 
making use of results available in Foster & Hargreaves 
(1963a, b - hereafter FH, 1963a, b). 

In FH, 1963b it is shown that the values of the 
moments of the normalized intensity for triclinic, 
monoelinic and orthorhombic crystals can be calcu- 
lated from one of only seven categories of expressions. 
Of these seven categories only categories 1,3,5 and 6 
correspond to the non-centrosymmetric case. 

The contribution to the structure factor of a re- 
flexion H(--hkl) from the real part of the atomic 
scattering factor of the P-atoms (i.e. anomalous 
scatterers) can be written as: 

p p 

F'p=sf~[ ~ ~pj+i ~. q,jl=sf~[~p+iq,],say, (5) 
j=l j=l 

where s is the number of equivalent positions in the 
unit cell and p is the number of anomalous scatterers 
in the asymmetric unit. Here ~pj and r/pj are the trig- 
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onometric  factors of  the geometrical structure factor 
of the j t h  a tom in the asymmetric  unit  and the other 
( s -  1) atoms equivalent to it. F rom (5) we have 

IF'vl=sf~,V~ + ~ = s f v E ,  say, (6) 

where 

E =  V ~  + r/~. (7) 

F rom Table 1 of FH (1963b) it can be shown that  for 
the present case 

(IF'vl2) = es2p( f v) 2 , (8) 

where e is a constant  whose value depends on the 
space-group category. The values of  e for categories 
1, 3, 5 and 6 are given in Table 1. From (6) and (8) we 
obtain 

yu = IF'vl/ (IF~,l s)~/z = E / V ~  . (9) 

F rom (4) and (9) it is clear that  

( x ) =  (E)l],/[zep . (10) 

F rom Table 1 of FH (1963b) the expressions for E for 
the case of crystals belonging to categories 1, 3, 5 and 6 
and containing a single species of  p anomalous  scat- 
terers at general positions in the asymmetric  unit can 
be obtained and are listed in Table 1. The quantities 
0~, ~0~ and ~ ( i=  1 to p) are mutual ly independent  
random variables uniformly distributed in the interval 
0 to 2re (FH, 1963a). F rom Table 1 it follows that  ( E )  
can be written as 

< E > -  (2~z)3 ~ o " '"  o ~V~-~-(--~ ~=,H d0,d~0,d~,,. (11) 

Equat ion (11) requires the evaluation of  a 3p-tuple 
integral involving the variables O~,~ol,gq,.,.,Op, tp~, 
and ~v~. We shall consider the cases p = l  and 2 
separately. 

The case o f  one anomalous scatterer per asymmetric 
unit (i.e. p = 1) 

For  category 1, it can be shown from Table 1 that  
E =  1 and e = 1 so that  from (10) we obtain 

( x ) = z r - v 2 = 0 . 5 6 4  . (12) 

For  category 3, e---½ and E can be shown to reduce to 
Icos 011 (Table 1). Hence we obtain from (10) 

( 2 )  '/2 1 I2=lcos OddO ~ 
( x ) =  2-£ o 

3/2 i,~/2cos 0~d01 = 0"508. 
,0 

(13) 

For  category 5, e=¼ and E is given by (Table 1) 

E =  (cos 2 01 cos s ~01 cos 2 ~1 
+ s i n  s 01 sin 2 ~01 sin 2 ~'1) 1/s . (14) 

Hence we obtain f rom (10 )and  (14) 

(X) = (-~-~)(-~-~)3IitrlilrI201r[COS201COS2 ~01COSS ~b¢1 

+s in  s 01 sin s :Pl s ins 9q]~/Sd01dcpld~l, (15) 

which after the substitution 0~ =0ff2zr, :p~=~o~/2zr and 
9'i = ~q/2rc becomes 

( x ) =  o o 

+s in  s 2zr0~ sin s 2~rq~ sin 2 2rc~,~]l/Sd0~d~d~v~. (16) 

The triple integral in (16) can be evaluated numerically 
to give 

( x ) = 0 . 5 0 7 .  (17) 

For  category 6, e=¼ and E can be shown to reduce to 
Icos 01 cos ~oll (Table 1). Hence we obtain from (10) 

( 2 )  (Icos 011)(Icos ~011) (x )=  

- I/lr =n--~-gTy = 0 . 4 5 7 .  (18) 

The case o f  two anomalous scatterers per asymmetric 
unit (i.e. p = 2) 

For  category 1, it follows from Table 1 and (10) that  

E(oos0 + os0: 

+(s in  01+sin  0s)z]l/Zd01d0,, (19) 

which on simplification yields [see equation (A5)] 

(x)= =0.508.  t20) 

Table 1. Values o f  e and expressions for  E ( = V ~  +rl~) for  the space-group categories 1, 3, 5 and 6* 

Space-group 
category number e 

1 1 
3 ½ 
5 ¼ 
6 ¼ 

Expression for E'I" 
[(Y. cos 0t)z+ (Y. sin 01)'] v2 
[(~ cos Ot cos ¢0D2+ (Y cos O, sin faD2] in 
[(Y cos 0~ cos ~01 cos ~,)z+ (y_ sin 8~ sin ~ot sin q/D2] u2 
[(Y cos 0~ cos f& cos qh)2+ (~ cos 0t cos f& sin gDz)] uz 

* For the notation see FH (1963b). Here Y_ denotes the summation over the p atoms in the asymmetric unit. 
t As in Table 1 of FH (1963b) other combinations for the geometrical structure factors A and B are possible in each category. 

But these need not be considered in our study since they lead to the same distributions. We have therefore listed the expressions 
corresponding to only one combination for (A,B). 
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For category 3, it follows from Table 1 and (10) that 

1 1 4 2~ .2n 2ni2n 
<x>= I0 I0 Io cos 

+ cos 02 cos ~02)2 + (cos 01 sin ¢Pl 
+cos  02 sin ~02)2]i/2dOldOzd~pld~02. (21) 

The quadruple integral in (21) can be reduced to a 
triple integral [see equation (A9)] so that 

1 l'f'11[cos227r0'l+cos227z0'2 <x>= T~ o . o  o 

+ 2  cos 2rc0'1 cos 2n0~ cos  2/rCO'] t/2 

x d0[d0~dco', (22) 

which on integration by numerical methods yields 

<x>=0.507.  (23) 

For category 5, we obtain from Table 1 and (10) 

which was evaluated by the Monte Carlo method, 
yielding 

<x)=0.487 .  (30) 

3. Discussion of the theoretical results 

From a study of the above results we see: (i) Among 
the commonly-arising case of crystals containing one 
anomalous scatterer per asymmetric unit (i.e. p= 1), 
the triclinic crystal (space group P1) is best suited for 
Bijvoet difference measurements, and the orthorhom- 
bic crystal of category 6 is the least favourable, 
other conditions such as the complexity of the asym- 
metric unit, the type of anomalous scatterer etc., 
being the same. (ii) For crystals containing two 
anomalous scatterers per asymmetric unit, though the 
orthorhombic crystal of category 6 is the least 
favourable, the distinction between the various 
categories becomes less marked. 

( 2 )  1/2 611n l~2rt 2 
<x>: 1o t  ,cos 0, cos 

2 2 
+ ( ~ sin 0~ sin (p~ sin N~)2]~/z H d0~dcp~d~q. (24) 

i=1 i=1 

After the substitution 

Oi=Off2rc, q)',=~o,12rc, ~,i= N,/2zc, i=  1,2, (25) 

(25) can be conveniently rewritten as 

( 2 )  1/2 S; 5 1 2  , • .. [( E cos 2re0 l cos 2rup'l cos 27r~u'~) 2 < x > =  o , = ,  

2 2 
+ ( ~  sin 2n0'~ sin 27up; sin 2n~'~)2] 1/x II d0;d~0'~dv;. (26) 

i=1 i=1 
.. 

The sextuple integral in (26) was evaluated by the 
Monte Carlo method (Demidovich & Maron, 1973) 
to give - 

<x>=0.500 . (27) 
~,. 

For category 6, we obtain from Table 1 and (10~ 

<x>= ~ o " '"  [(t=lEc°s 0~cos ~0~ cos ~)2  

2 2 
+ ( ~ cos 0~ cos ~p~ sin ~i)2] 1/2 II d0~d~0id~q. (28) 

i=1 i=1 

The sextuple integral can be reduced to a quintuple 
integral [see equation (A12)] 

; . -  

<x> . . . .  1[cos2 2rc0[ cos 2 2n~0~ ' 
d0 

+ cos 2 2rC0z cos 2 2ZUpz 
+ 2 cos 27r0[ cos 27r02 cos 27r~0[ cos 27uP2 
x cos 27rco']md0[d0~dtp[dtp2de) ' , (29) 

One of the authors (M.N.P.) thanks the University 
Grants Commission, New Delhi, India, for financial 
assistance. 

APPENDIX 

Expanding, the square terms in the integrand of (19) 
and simplifying we obtain 

1 ( 1 , 2r02na2n 
<x>= 10 10"+°°s(°'-°e)r'e<i°'d°2 o,,,) 

Making the substitution 01-02 = co, we can rewrite (A 1) 
as 

<X> = 4~Z5/2 d02 1 (1 -t-COS co)l/2do) . (A2) 
0--02 

Since the integrand is periodic with period 2re, we can 
rewrite (A2) as 

1 Ii~d02120 +cos  <x>= ~ ~(1 09)1/2do) (A3) 

Interchanging the order of integrations in (A3), we 
obtain 

<x) -- ~ (1 + cos  o9)1/2dco 

= ~ (1 + cos o))V2do). (A4) 

Using the result cos co = 2 cos 2 ( 0 / 2 ) -  1, and changing 
the variable of the integration to o9/2 = co' we can show 
that (A4) yields 

<x>= 
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Expanding the square terms in the integrand of (21) 
and simplifying we obtain 

S ( X ) :  - -~  (.--~-- [COS 2 01 -{'-COS 2 02 

+ 2  cos 0~ cos 02 cos (~01-~o,)]l/2dOldO2dqhd~02. (A6) 

Making  the substitution ~01-qh=co, we can rewrite 
(A6) as 

1 / 1 \ 4~2nf.2nc,2,~ d d 
(X)= ~ (-~-) lO 10 lO {91d02 q72 

p2n--~2 
X ~ [COS201"JI-COS 2 02+2 COS 0, COS 0 2 COS (.o]1/2d(.o . 

t~--~2 
(A7) 

Making use of the arguments employed in obtaining 
(A4) from (A2) we can simplify (A7) to obtain 

( x ) =  --~1 ( 1 ~ ) 3  12zr 12n 12rt[COS2 01 COS2 0 2 d 0  dO 0 

+ 2  cos 0, cos 02 cos o9]*/2d0,d02do9. (A8) 

Making the substitution 

co' = o9/2zr, 0; = 0JDr, i = 1 ,2 ,  

we can rewrite (A8) 

1 I l i' l ' [  c°s2 2zr0; +cos  2 21r0~ 

+ 2 cos 2zr0~ cos 2zr0~ cos 2zroo']~/Zd0~d0~do9 ' . (A9) 

Expanding the square terms in the integrand of  (28) 
and simplifying we obtain 

(X)= ( 2 )  1/2 (2~-)6 llzr... Iirt[COS 2 01 COS 2 ~1 

"31-COS2 02 COS2 ~2 
+ 2  cos 0~ cos 02 cos ~0~ cos qh cos (9'1 - I//2)] 1/2 

2 
x YI d0idcp~dvi . (A 10) 

i=1 

Making the substitution gq-~¢2=0)  we can rewrite 
(AIO) as 

(2)1/2 (1)612  ( x )  = - ~  o "'" dOldO2dqhd~o2d~2 
0 

p2n-- ~/2 
)< l--~Y2 [COS2~I COS2 ~91 "~- COS2 ~2 COS2 q72 

+ 2  cos 01 cos 02 cos qh cos ~2 cos (_/)]1/2 dco. (A l l )  

Making use of  the arguments employed in obtaining 
(A4) for (A2) we can rewrite (All.) as 

(X)= ( 2 )  1/2 (2-~-) 5 if '""" 117r[cOs2 01 COS2 ~* 

+ cos 2 02 cos 2 ~o2 

+ 2  cos 0x cos 02 cos qh cos qh cos co] 1/2 
x d01d02d~oldqhdco, 

which, after the substitution, 

m' = o9/2zr, 0~ = 0t/2zr, q~'~ = ~o~/2rc, i = 1 ,2 ,  

can be rewritten as 

(X)= (2)1/2 II0. . . I10[C0S2 27~0"1C0S2 27~q~" 1 

+ cos 2 2zc0~ cos 2 2rc~ 

+ 2 cos 2zc0~ cos 2zc0~ cos 2zc~0~ cos 2zcqf2 
x cos 2rcco']*/2d0~d0~d~dcp~do9 ' . (A 12) 
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